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Clock gene Bmal1 is dispensable for intrinsic
properties of murine hematopoietic stem cells
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Abstract

Background: Circadian rhythms are known to influence a variety of biological phenomena such as cell cycle, sleep-wake
rhythm, hormone release and other important physiological functions. Given that cell cycle entry of hibernating
hematopoietic stem cells (HSCs) plays a critical role in controlling hematopoiesis, we asked functional significance of the
clock gene Bmal1, which plays a central role in regulating circadian rhythms as a transcription factor. Here we investigated
the necessity of Bmal1 for HSC functions using Bmal1 deficient (Bmal1−/−) mice.

Findings: Using colony-forming assays in vitro, we found that the frequency of mixed colony formation between
Bmal1+/+ and Bmal1−/− CD34−KSL cells does not differ significantly. Competitive bone marrow assays also revealed
that Bmal1−/− bone marrow cells competed normally with wild-type cells and displayed long-term multi-hematopoietic
lineage reconstitution. In addition, there were no significant differences in the frequencies and hibernation state of bone
marrow HSCs between Bmal1+/+ and Bmal1−/− mice, suggesting that they are independent of circadian rhythms.

Conclusions: This paper discusses the necessity of circadian rhythms for HSC functions. Our data clearly shows that a
key circadian clock gene Bmal1 is dispensable for intrinsic functions of HSCs, such as differentiation, proliferation and
repopulating ability.
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Findings
Background
Hematopoietic stem cells (HSCs) reside in specialized
bone marrow (BM) microenvironments, called niches,
providing the entire range of blood cells throughout the
lifespan [1,2]. We have recently demonstrated that non-
myelinating Schwann cells induce hibernation of HSCs
in mouse BM [3,4]. Occasionally, most HSCs in the BM
niche come out of hibernation and undergo cell division
on average every one to two months [5,6]. Although the
molecular mechanisms underlying re-entry into the cell
cycle remain obscure, recent evidence suggests that the
circadian clock regulates HSC trafficking between the
BM and peripheral blood (PB) via the sympathetic nervous
system [7]. To address the relationship between circadian
oscillation and HSC hibernation in BM hematopoiesis, we
here considered the possibility that the circadian
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transcription factor Bmal1 [8] is involved in BM
hematopoiesis. Accumulating evidences have suggested
that BMAL1 forms heterodimers with CLOCK, binds to
E-box sequences in the promoter region and regulates the
transcription of a number of clock-controlled genes. We
therefore examined differentiation, proliferation and re-
populating capacity of HSCs in Bmal1 deficient (Bmal1−/−)
mice which demonstrate complete loss of circadian behav-
ioral rhythms [9] and only half life span of wild-type mice
[10]. Our findings led to the conclusion, however, that
Bmal1 is dispensable for differentiation, proliferation and
repopulating ability of murine HSCs.
Materials and methods
Mice
C57BL/6-Ly5.1 (B6-Ly5.1) and C57BL/6-Ly5.1/5.2-F1
(B6-F1) mice were purchased from Sankyo-Lab Service
(Tsukuba, Japan). Bmal1−/− mice were obtained by mating
Bmal1+/− mice [11] bred and maintained in the Animal
Research Facility of the Institute of Medical Science, the
University of Tokyo. Animal care in our laboratory was in
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accord with the guidelines of the University of Tokyo for
animal and recombinant DNA experiments.

CFU-Cs assay
PB mononuclear cells were isolated from 400 μl PB on
Ficoll-Paque PLUS (GE Healthcare, Buckinghamshire,
England) and CFU-Cs assays were performed using Metho-
Cult (STEMCELL Technologies, Vancouver, Canada) ac-
cording to manufacturer’s protocols. On day 11 of culture,
colonies were observed under light microscopy.

Purification of murine HSCs
Mouse CD34−KSL HSCs were purified from BM cells of 8-
10-week-old mice. The cells were stained with an antibody
cocktail consisting of biotinylated anti-Gr-1, −Mac-1,
−CD4, −IL-7R, and -Ter-119 (eBioscience, San Diego, CA),
and -B220 and -CD8 monoclonal antibodies (BioLegend,
San Diego, CA) (lineage-marker cocktail). Lineage-positive
cells were depleted with anti-Biotin MicroBeads (Miltenyi
Biotec, Auburn, CA) and LS columns (Miltenyi Biotec).
The remaining cells were further stained with fluorescein
isothiocyanate (FITC)-conjugated anti-CD34 (BD Bio-
science, California, CA), phycoerythrin (PE)-conjugated
anti-Sca-1 (eBioscience), and allophycocyanin (APC)-
conjugated anti-c-Kit antibodies (BioLegend). Biotinylated
antibodies were detected with streptavidin-APC-Cy7 (Bio-
Legend). Analysis and cell sorting were performed on a
MoFlo using Summit software (Dako, Glostrup, Denmark)
and results were analyzed with FlowJo software (Tree Star,
Ashland, OR).

Colony assays and single-cell cultures
CD34−KSL HSCs were clonally deposited into 96-well
micro-titer plates containing 200 μl of S-Clone SF-03
(Sanko Junyaku Inc, Tokyo, Japan) supplemented with
10% BSA and cytokines (50 ng/ml mouse SCF, 50 ng/
ml human TPO, 20 ng/ml mouse IL-3 and 2 U/ml
mouse EPO for colony assays; 50 ng/ml mSCF, 50 ng/
ml hTPO for proliferation assays). Colonies were re-
covered on day 11 of culture, cytospun onto slide
glasses and subjected to Hemacolor staining (MERCK,
Darmstadt, Germany) for morphological examination.
To observe proliferation potential of CD34−KSL cells,
cells were counted under light microscopy.

Competitive repopulation assays
Competitive repopulation assays were performed
using the Ly5 congenic mouse system. 1 × 106 BM
cells from Bmal1+/+ or Bmal1−/− mice (B6-Ly5.2) and the
same number of BM competitor cells from B6-F1 mice
were transplanted into B6-Ly5.1 mice irradiated at a dose of
9.5 Gy. After transplantation, PB cells of the recipients were
stained with PE-conjugated anti-Ly5.1 (BioLegend) and
FITC-conjugated anti-Ly5.2 (BD Bioscience). The cells were
further stained with PE-Cy7-conjugated anti-Mac-1 and
-Gr-1, Pacific Blue (PB)-conjugated anti-B220 and APC-
Cy7-conjugated anti-CD3 antibodies (BioLegend) and then
analyzed on a FACS Aria (BD Bioscience). The second
BMT was performed by transferring 1 × 106 BM cells
from femora and tibiae of the primary recipient mice
into lethally irradiated Ly5.1 mice. PB cells from the
secondary recipient mice were analyzed 4, 8 and
12 weeks after the second BMT.

Cell cycle assays
To analyze the G0 phase, cells were incubated with
1 μg/ml Pyronin Y (Sigma-Aldrich, Saint Louis, Mis-
souri) at 37°C for 30 min and analyzed on a FACS
Aria. To investigate the turnover rate of CD34−KSL
cells, EdU (invitrogen) was administered continuously to
mice in the drinking water (0.5 mg/ml). After 3 weeks,
BM cells were assessed with a Click-iT EdU PB Flow Cy-
tometry Assay Kit (invitrogen) according to manufac-
turer’s protocols and analyzed on a FACS Aria.

White blood cell differentiation
PB cells of 10 or 40-week-old Bmal1+/+ or Bmal1−/−

mice were stained with PE-conjugated anti-Gr-1,
APC-conjugated anti-CD4, FITC-conjugated anti-CD8
(eBioscience), PE-Cy7-conjugated anti-Mac-1, PB-
conjugated anti-B220 and APC-Cy7-conjugated anti-
CD3 antibodies and then analyzed on a FACS Aria.

Results and discussion
Bmal1−/− HSCs exhibit comparable differentiation and
proliferation potentials in vitro
It has been shown that the mobilization of
hematopoietic stem and progenitor cells (HSPCs)
from BM is regulated by circadian clock [7]. We
therefore considered the possibility that the circadian
transcription factor Bmal1 is involved with BM
hematopoiesis. Indeed we could detect oscillating
CFU-Cs of HSPCs in PB of Bmal1+/+ mice at Zeit-
geber time (ZT) 5 and ZT17, but there were no sta-
tistically significant fluctuations in case of Bmal1−/−

mice (Additional file 1: Figure S1A). Thus, oscillating
CFU-Cs of HSPCs appear to be regulated by circadian
clock, however, it is unclear how Bmal1 affects intrin-
sic functions of HSCs such as differentiation, prolifer-
ation and repopulating capacity. We therefore asked
to investigate and clarify these problems.
For the present investigation of effects of Bmal1 absence

on differentiation of HSCs, we performed colony-forming
assays in vitro in which freshly isolated Bmal1+/+

and Bmal1−/− CD34−KSL cells were cultured for 11 days
in medium supplemented with SCF, TPO, IL-3 and
EPO. The resultant frequencies of mixed colonies
(nmEM) did not differ significantly between Bmal1+/+
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Figure 1 Normal differentiation in vitro and normal long-term reconstitution ability in vivo of Bmal1−/− HSCs. A, B) Normal in vitro colony
formation capacity of Bmal1−/− HSCs. Single HSCs from Bmal1+/+ and Bmal1−/− mice were cultured with cytokines for 11 days. Data shown are
the mean numbers ± SDs of colonies of three independent experiments (n = 3). Colony cells were morphologically identified as neutrophils (n),
macrophages (m), erythroblasts (E) and megakaryocytes (M). The scale bar in B is 100 μm. C) Comparable proliferation potentials of Bmal1−/−

HSCs. CD34−KSL HSCs were clonally deposited into 96-well micro-titer plates containing 200 μl of S-Clone SF-03 supplemented with 10% BSA and
cultured with the indicated cytokines (50 ng/ml mouse SCF, 50 ng/ml TPO) for 7 days. Cell numbers were counted under a microscope. Data
shown are mean numbers ± SEMs of colonies (n = 52). D-F) Comparable long-term reconstitution ability of Bmal1+/+ and Bmal1−/− HSCs
during serial transplantation. Lethally irradiated recipient B6-Ly5.1 mice were transplanted with 1 × 106 BM cells (harvested at ZT5) from Bmal1+/+

and Bmal1−/− mice (Ly5.2) and the same number of BM competitor cells from F1 mice in a competitive repopulation assay. Data shown are the
mean ratios ± SDs of donor-derived cells in the PB at 12 weeks after the first BMT (D, n = 7), in the BM at 12 weeks after the first transplantation
(E, n = 7), and in the PB at 12 weeks after the second BMT (F, n = 5) of three independent experiments.
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and Bmal1−/− CD34−KSL cells (Bmal1+/+ CD34−KSL
cells; 29.17 ± 1.18%, Bmal1−/− CD34−KSL cells; 34.40 ±
2.22%) (Figure 1A). After close examination, we found
that there is no significant morphological difference be-
tween the colonies of two groups (Figure 1B). In
addition, Bmal1+/+ and Bmal1−/− CD34−KSL cells
demonstrated comparable proliferation potentials after
7 days culture (Figure 1C).

Bmal1 is dispensable for Bone marrow reconstitution
To determine the repopulating ability of Bmal1−/− HSCs
in vivo, we designed a competitive repopulation assay.
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For this purpose, 1 × 106 BM cells from Bmal1+/+ or
Bmal1−/− mice were transplanted into lethally irradiated
recipient mice along with an equal number of BM cells
from B6-F1 mice. At 4, 8 and 12 weeks after transplant-
ation, flow cytometric analysis showed a high-level chime-
rism of B220+ cells in PB of the recipients transplanted
with Bmal1−/− BM cells, but this was not observed in the
second Bone Marrow Transplantation (BMT). In addition,
there was no statistically significant difference in the chime-
rism of Gr-1+/Mac-1+ and CD3+ cells. These results suggest
that Bmal1+/+ and Bmal1−/− BM cells are equally capable
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Figure 2 Cell cycling and differentiation of HSCs are normal in arrhyt
BM of 8-10-week-old Bmal1−/− mice. CD34−KSL fractions were assessed by
ZT5 and ZT17. B) The mean percentages ± SDs of CD34−KSL cells at ZT5 (n
frequency of quiescent cells in HSC populations. HSCs of Bmal1+/+ and Bmal1−/

the mean percentages ± SDs of Pyronin Y− cells in the CD34−KSL populations a
incorporation in Bmal1−/− CD34−KSL cells. EdU was administered orally to mice
Click-iT EdU PB Flow Cytometry Assay Kit. Data shown are the mean percentage
mice; n = 3). E) White blood cell differentiation in young (10-week-old) and age
percentage. Gr-1+, granulocytes; Mac-1+, macrophages; B220+, B cells; CD4+, CD
of hematopoietic reconstitution (Figure 1D and Additional
file 1: Figure S1B). With regard to donor-derived chimerism
in the recipient’s BM, there was no significant difference be-
tween Bmal1+/+ and Bmal1−/−-derived CD34−KSL cells
(Figure 1E).
In a second competitive repopulation assay, at 12 weeks

after the first BMT, 1 × 106 BM cells from these recipients
were transplanted into second recipient mice. At 4, 8 and
12 weeks after the second BMT, no big difference was also
seen between the hematopoietic reconstitution ability of
both donor-derived cells (Figure 1F and Additional file 1:
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Figure S1C). Moreover, we performed a third BMT at
12 weeks after the second BMT, but the result was the
same as with the second BMT (data not shown).

Normal frequencies and hibernation state of Bmal1−/− HSCs
Although these results presented here led us to the con-
clusion that there appears to be no intrinsic circadian
rhythm in HSCs, deficiency of Bmal1 might change BM
niche and affects the frequencies or cell cycling of HSCs.
However, flow cytometry analysis of BM revealed no sig-
nificant difference in the frequencies of Bmal1+/+ and
Bmal1−/− CD34−KSL cells at ZT5 and ZT17 (Figure 2A,B).
Likewise, the frequencies of KSL cells, Common myeloid
progenitor (CMP), Granulocyte-macrophage progenitor
(GMP) and Megakaryocyte-erythroid progenitor (MEP) in
Bmal1−/− mice were similar to those in Bmal1+/+ mice
(Additional file 2: Figure S2).
To investigate the hibernation status of HSCs in

Bmal1−/− mice, we stained CD34−KSL cells with Pyronin
Y [12]. Consistent with our previous work [4], we found
that most Bmal1+/+ and Bmal1−/− CD34−KSL cells were
negative for Pyronin Y staining, indicating normal HSC
hibernation state, and that there were no differences de-
pending on circadian rhythm (Figure 2C). In addition, after
oral administration of EdU (5-ethynyl-2´-deoxyuridine) to
Bmal1−/− mice for 3 weeks, we could not obtain statisti-
cally significant difference in EdU incorporation between
Bmal1+/+ and Bmal1−/− CD34−KSL, indicating no alter-
ation in cell cycling status (Figure 2D).

Bmal1 deficiency does not affect white blood cell
differentiation
It has been reported that life span of Bmal1−/− mice is only
half that of wild-type mice [10], raising the possibility of an
altered hematopoietic differentiation program in Bmal1−/−

mice. We therefore examined PB cells of Bmal1+/+ and
Bmal1−/− mice at 10 and 40 weeks of age. Although most
Bmal1−/− mice died within 40-week-old and the sur-
vived 40-week-old Bmal1−/− mice looked older than their
Bmal1+/+ counterparts, there were no significant changes
in the levels of myeloid cells, B cells or T cells (Figure 2E).

Concluding remarks
Recent studies have demonstrated that the central clock
in suprachiasmatic nucleus (SCN) regulates the expression
of Cxcl12 through sympathetic nervous system [7] and
Cxcr4 expression in BM KSL cells or CD150+CD48− cells
[13] fluctuates according to circadian rhythms [14]. How-
ever, it has been reported that the clock genes are not
expressed rhythmically in side population (SP) cells [15],
suggesting that Cxcr4 expression may be independent
from control of clock genes. Moreover, Yagita et. al. [16]
have recently found that circadian clock oscillation is not
detected in mouse embryonic stem (ES) cells and induced
pluripotent stem (iPS) cells, but is induced during their
differentiation. Taken together, these findings appear to
support the idea that the absence of circadian rhythm
does not affect the function of stem cells in common.
In conclusion, despite the fact that mobilization of HSCs

is controlled by circadian rhythm, our results demonstrate
that Bmal1 deficiency does not affect differentiation, pro-
liferation and repopulating ability of murine HSCs. There-
fore, we propose that circadian gene Bmal1 is dispensable
for intrinsic properties of murine HSCs.

Additional files

Additional file 1: Figure S1. A) Traffic of HSPCs to bloodstream shows
circadian oscillation. Circulating Colony-forming Units in Culture (CFU-Cs)
did not oscillate in Bmal1−/− mice (n = 3) compared with Bmal1+/+ mice
(n = 4). Data shown are the mean percentages ± SDs of two independent
experiments. B, C) Comparable long-term reconstitution ability of Bmal1+/+

and Bmal1−/− HSCs during serial transplantation. Data shown are the mean
ratios ± SDs of donor-derived cells in the PB at 4, 8 weeks after the first (n = 7)
and the second BMT (n = 5) of three independent experiments.

Additional file 2: Figure S2. Normal frequency of progenitors in the
BM of 8-10-week-old Bmal1−/− mice. KSL, CMP, GMP and MEP fractions
were assessed by flow cytometry. The mean percentages ± SDs of KSL cells,
CMP, GMP and MEP of Bmal1+/+ and Bmal1−/− mice of two independent
experiments (n = 3).
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