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Abstract

Background: Drug-eluting stents (DES) have dramatically reduced restenosis rates compared to bare metal stents
and are widely used in coronary artery angioplasty. The anti-proliferative nature of the drugs reduces smooth
muscle cell (SMC) proliferation effectively, but unfortunately also negatively affects endothelialization of stent
struts, necessitating prolonged dual anti-platelet therapy. Cell-type specific therapy may prevent this complication,
giving rise to safer stents that do not require additional medication. 6-Mercaptopurine (6-MP) is a drug with
demonstrated cell-type specific effects on vascular cells both in vitro and in vivo, inhibiting proliferation of
SMCs while promoting survival of endothelial cells. In rabbits, we demonstrated that DES locally releasing 6-MP during
4 weeks reduced in-stent stenosis by inhibiting SMC proliferation and reducing inflammation, without negatively
affecting endothelialization of the stent surface. The aim of the present study was to investigate whether 6-MP-
eluting stents are similarly effective in preventing stenosis in porcine coronary arteries after 3 months, in order to
assess the eligibility for human application.

Methods: 6-MP-eluting and polymer-only control stents (both n=7) were implanted in porcine coronary arteries
after local balloon injury to assess the effect of 6-MP on vascular lesion formation. Three months after implantation,
stented coronary arteries were harvested and analyzed.

Results: Morphometric analyses revealed that stents were implanted reproducibly and with limited injury to the vessel
wall. Unexpectedly, both in-stent stenosis (6-MP: 41.1 + 10.3 %; control: 29.6 + 5.9 %) and inflammation (6-MP: 2.14 + 0.
51; control: 143 +0.45) were similar between the groups after 3 months.

Conclusion: In conclusion, although 6-MP was previously found to potently inhibit SMC proliferation, reduce
inflammation and promote endothelial cell survival, thereby effectively reducing in-stent restenosis in rabbits,

stents containing 300 pg 6-MP did not reduce stenosis and inflammation in porcine coronary arteries.

Background

Coronary heart disease is a pervasive health problem
and affects life expectancy worldwide. Percutaneous cor-
onary intervention has proven a widely successful treat-
ment to restore perfusion to the heart and is now one of
the most common medical interventions [1]. In order to
maintain artery patency, stents are applied in 90 % of
interventional procedures [2]. Drug-eluting stents (DES)
have significantly reduced restenosis rates compared to
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bare metal stents. DES that elute paclitaxel, sirolimus or
second-generation —limus analogues such as everolimus,
zotarolimus and biolimus, have been found to efficiently
inhibit restenosis, reducing it to below 5 % [2]. These
drugs are anti-proliferative regardless of cell type,
thereby effectively reducing smooth muscle cell (SMC)
proliferation, yet negatively affecting endothelialization
of stent struts [3]. Uncovered stent struts are the sub-
strate for late and very late stent thrombosis, a poten-
tially lethal effect which necessitates prolonged dual
anti-platelet therapy [4]. Premature anti-platelet therapy
discontinuation is associated with mortality and major ad-
verse cardiac events in both first- and second-generation
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DES [5]. Stents loaded with a drug having a cell-type spe-
cific mechanism of action may effectively inhibit SMC
proliferation and reduce restenosis without negatively
interfering in the process of re-endothelialization of the
stented artery segment, giving rise to safer stents and
lower risk of the occurrence of thrombotic events.

Nuclear receptor Nur77 (also referred to as NR4Al,
TR3, NGFI-B or NAK-1), an orphan nuclear receptor of
the NR4A subfamily, is involved in cellular processes such
as proliferation, differentiation and migration. Nur77 has
various protective functions in vascular cells both in vitro
and in vivo, and exerts its beneficial effects in a cell-type
specific fashion [6]. Firstly, Nur77 prevents SMC prolifera-
tion in vitro and induces a more quiescent SMC pheno-
type in vivo [7, 8]. In addition, activation of Nur77
promotes survival of endothelial cells and capillary
sprouting [9-11]. Furthermore, Nur77 is involved in
differentiation of bone marrow-derived patrolling
monocytes and reduces the inflammatory response of
macrophages [12—14]. Together, these functions protect
against neointima formation and atherosclerosis in vivo
in mouse models [15, 16]. Based on this knowledge we
hypothesize that targeting Nur77 is an interesting
approach to prevent in-stent restenosis, while promot-
ing re-endothelialization and reducing local inflamma-
tion and thrombosis. 6-Mercaptopurine (6-MP) is a
well-documented activator of Nur77, with demon-
strated beneficial effects on vascular cells both in vitro
and in vivo [17]. In a study recently published by our
group, we investigated the efficacy of stents eluting 6-
MP in rabbit iliac arteries [18]. We demonstrated that
stents releasing 6-MP during 4 weeks according to
first-order kinetics from biodegradable coatings com-
posed of urethane-linked multi-block copolymers reduced
in-stent stenosis by inhibiting SMC proliferation and re-
ducing inflammation, without negatively affecting en-
dothelialization of the stent surface [18]. The aim of
the present study is to investigate whether 6-MP-
eluting stents are similarly effective in preventing sten-
osis in porcine coronary arteries, as a next step towards
human application. Therefore, stents were implanted in
porcine coronary arteries and the stented vessels were
evaluated after 3 months.

Methods

Stent coating

Polymer-only and 6-MP-eluting stents containing
300 pg 6-MP were prepared as described before [18].
In brief, Kaon 3.0x15 mm balloon expandable cobalt
chromium stents (Fortimedix, Nuth, the Netherlands)
were abluminally spray-coated with a solution of a
blend of SynBiosys GLL, a multiblock copolymer con-
sisting of 50 % w/w of poly(DL-lactide-co-glycolide)
and 50 % w/w of poly(DL-lactide) and SynBiosys
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GPCGL, a multiblock copolymer consisting of 15 %
w/w of poly(glycolide-co-PEG600-co-g-caprolactone)
and 85 % w/w of poly(DL-lactide-co-glycolide) (InnoCore
Pharmaceuticals, Groningen, the Netherlands) containing
0 or 33 wt% 6-MP (purity >99.5 %, Acros Organics).
Coated stents were crimped on stent delivery systems
(Clearstream DAC135 balloon catheter, Clearstream,
Moyne Upper, Ireland) and sterilized by E-beam (25 kGy)
by Synergy Health, Radeberg, Germany prior to implant-
ation. Coating quality was examined visually and by scan-
ning electron microscopy. Elution of 6-MP from coated
stents was measured in vitro in 5 mL PBS buffer pH 7.4 at
37 °C (shaking water bath). Samples were collected at
predetermined timepoints and refreshed with fresh
buffer. The concentration of 6-MP in elution samples
was measured by HPLC as described before [18]. The
concentration of 300 pug 6-MP was chosen, as this
was shown to be effective in reducing in-stent sten-
osis in rabbit iliac arteries [18].

Animal model

In this study, 6 female Landrace pigs weighing 40-50 kg
were included in the study. The animals received standard
care, were housed together, maintained on a regular chow
diet and were given access to drinking water ad libitum.
Ten days before surgery, heart stabilization started with
administration of amiodaron (800 mg/day). After surgery,
amiodaron administration was continued with a lower
dose (400 mg) and continued until the end of the ex-
periment. Five days before surgery, anti-coagulation
therapy was initiated by single administration of clopi-
dogrel (Plavix, 225 mg) and aspirin (Ascal 100 mg),
followed by daily oral administration throughout the
entire procedure (Plavix 75 mg/day, Ascal 100 mg/day).

Surgical procedure

Animals were anesthetized with injections of ketamine
(13 mg/kg), midazolam (0.7 mg/kg) sufentanyl (0.0075 mg/
kg) and propofol (3 mg/kg). Amiodaron (150 mg iv) was
administered once. Prophylactic antibiotics (Amoxycillin/
clavulanic acid 500/50, 10 mg/kg iv) were administered be-
fore and 1 day after the operation. Metoproprolol (3 mg iv)
was administered if heart rate exceeded 80 bpm. Local
analgesia at the site of entry consisted of intracutaneous
injection of lidocaine (2 %) and bupivacaine (0.5 %) 1:1.
Operations were performed under sterile conditions.
The common carotid artery was surgically exposed
and accessed with a 7 F introducer sheath (Cordis,
Miami Lakes, Fl, USA) after heparin administration
(100 IU/kg iv). A 7 F guiding catheter (Mach 1, Boston
Scientific, Marlborough, MA, USA) was positioned in the
left main or right coronary artery under fluoroscopic
guidance, while injecting contrast agent (Hexabrix,
320 mg I/ml) diluted 2:1 with saline. Two or three
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stents were implanted in the right coronary artery
(RCA), the left circumflex (LCX) and/or the left an-
terior descending (LAD), depending on the animal-
specific anatomy. Stents were randomly assigned to
arteries, with different stent types within the animal.
Before stent placement (10 % overstretch, 20 s), damage
was induced by balloon inflation (Abbott, Abbott Park, Il
USA) at the implantation site (15 % overstretch, 20 s).
After employment of the stents, patency was confirmed
angiographically. In case of ventricular fibrillation, Amio-
daron (150 mg) was administered immediately followed
by treatment with a manual external defibrillator until
normal sinus rhythm was re-established. After confirm-
ation of correct stent placement and patency, catheters
were removed, the carotid artery was sutured and the
wound was closed, and animals received buprenorphine
(Temgesic, 0.02 mg/kg). Three months after stent im-
plantation the same anesthetic protocol was applied for
control angiography and after angiography, the animal
was euthanized with a lethal dose of pentobarbital. The
heart was rapidly excised, after which the stents were har-
vested and subsequently fixed.

Sample processing

For quantitative morphometric analysis, stented arterial
segments were fixed overnight in 4 % formaldehyde after
excision and stored in 70 % ethanol. The segments were
dehydrated in a graded series of acetone and embedded
in resin (methyl methacrylate and butyl methacrylate,
1:1). Sections (7 um) were cut with a rotary microtome
(Leica) from the middle of the stent, after sawing the
segment with a band saw (Exakt). Sections were attached
to glass slides and dried overnight.

Morphometric analysis

General histology and fibrin deposition was determined
with hematoxylin and eosin (H&E) staining. Morpho-
metric analysis and injury score according to Schwartz
[19] were performed on sections stained with Lawson-van
Gieson (LvQ) staining. The lumen cross-sectional area, ex-
ternal elastic lamina area and internal elastic lamina (IEL)
area corrected for strut holes were assessed with imaging
software (Leica Qwin). The percentage of stenosis was
calculated as [1-(lumen area/IEL area)]*100. Addition-
ally, Masson’s Trichrome (MT) staining was performed
to visualize the medial SMC layer and the adventitial
collagen layer.

Inflammation

Infiltration of inflammatory cells is an important factor
in the evaluation of stent safety and is idiopathic for the
porcine coronary artery model. Therefore, inflammation
was scored in a blinded fashion by a pathologist as de-
scribed before [20].
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Immunohistochemistry

Sections were stained immunohistochemically using
antibodies against smooth muscle a-actin ((SMA, 1A4,
DAKO), von Willebrand Factor (Millipore) and p27"®*
(Abcam), followed by horseradish peroxidase (HRP)-
conjugated goat anti-mouse antibodies (Southern Biotech)
or poly HRP-anti-rabbit IgG (Immunologic, Duiven, the
Netherlands) followed by 3,3-diaminobenzidine (DAB)
substrate color development (Immunologic). p27°"*
quantification was performed on 3 areas per stent section
for all stents and expressed as positive area of the intima.

Statistical analysis

Values are presented as mean + SE. Mann—Whitney U-test
was used for morphometry, inflammation score and IHC
of 6-MP versus control group using Prism 5.03 (GraphPad
Software, San Diego California, USA). Differences were
considered statistically significant with P < 0.05.

Results

6-MP release from stents

Characteristics of the stent coating, as well as release
and stability of 6-MP were described before [17]. Briefly,
coatings were evenly distributed over the stent and char-
acterized by a smooth surface (Fig. 1a, b), which was not
negatively affected by crimping, sterilization or expan-
sion of the stent by the balloon catheter. 6-MP-eluting
stents eluted 6-MP gradually according to first order re-
lease kinetics, delivering over 75 % of the drug within
one month (Fig. 1c).

Vessel wall characterization

The 6-MP-eluting and polymer-only stents were im-
planted in porcine coronary arteries after local balloon
injury to assess the effect of 6-MP on vascular lesion for-
mation. Depending on the anatomical variation per ani-
mal, two or three stents were implanted in the RCA
(Fig. 1d), LCX (Fig. 1e) and/or LAD (Fig. 1f). Three
months after stent implantation, control angiography
was performed under the same anesthetic protocol.
Patency of all stents was visually confirmed by angi-
ography directly after placement and after 3 months,
before harvest of the stented segments (Fig. 1g). H&E
staining on resin-embedded sections showed similar
structure of the vessel wall between groups that re-
ceived either polymer-only or 6-MP-eluting stents
(Fig. 2a, d). No fibrin deposition was observed in the
vessel wall. Masson Trichrome staining revealed simi-
lar organization of the vessel wall in both groups, and
no difference in collagen deposition (Fig. 2b, e). To
quantify different vascular layers, Lawson-van Gieson
staining was performed visualizing the elastic laminae
and connective tissue (Fig. 2c, f). To assess the pres-
ence of endothelial cell on the lesions, we performed
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Fig. 1 Characteristics and implantation of 6-MP DES in porcine coronary arteries. Polymer-only control stents (a) and stents loaded with 300 ug
6-MP (b) showed smooth coating surfaces by scanning electron microscopy. The cumulative release of 6-MP from the stents (c) was determined
in vitro for up to 38 days (panels a-c adapted from [18]). After applying endothelial damage by balloon inflation, stents were deployed in the RCA
(d), LCX (e) and LAD (f). Stent placement was followed by control angiography to ensure patency of the stented coronary artery. After 3 months,
control angiography was repeated to reassess patency. After euthanasia, the heart was rapidly excised and the stents, visible as indicated (g), were

harvested and fixed. Arrows indicate location of the stents
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a VWF staining and demonstrated complete coverage of
the lesions with endothelial cells in all samples after
3 months (Fig. 2g). Stented vessel segments of both
groups were stained with an antibody directed against the
SMC marker aSMA; the adventitia is negative for this
marker (Fig. 2h). In the media all SMCs are circumferen-
tially aligned, whereas in the intima most cells stain posi-
tive and are longitudinally aligned SMCs. To obtain
insight in the extent of quiescent and proliferating cells in
the vessel wall, we performed an immunohistochemical

staining for the cell cycle inhibitor p27*%*, p27"P*-positive
cells were detected in all layers of the vessel wall in both
groups, with relatively low expression in the intima
(Fig. 2i). The latter indicates that as expected, most non-
quiescent, proliferating cells are localized in the intima,
whereas medial SMCs remain mostly quiescent.

Morphometry
Morphometric analyses revealed that stents were im-
planted reproducibly, as demonstrated by the similar
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Fig. 2 Characterization of stented coronary arteries 3 months after placement. Sections of arteries implanted with polymer-only stents (control) or
6-MP-eluting stents (6-MP) were stained with H&E to assess general histology of the stented vessel wall (a, d). Masson trichrome staining visualized the
adventitia (Adv), media (Med) and intima (Int) of the vessel wall as well as strut holes (s) (b, e). Lawson-Van Gieson staining was applied to stain the
internal and external elastic lamina and thus quantification of the different layers of the vessel wall (¢, f), enabling morphometric analysis. Endothelial
cell coverage of the vessel wall was demonstrated by immunohistochemical staining with an antibody against VWF (g). The media largely consists of
circumferentially aligned SMCs, whereas SMCs in the intima are oriented longitudinally in the vessel wall, as shown by staining with an antibody
directed against aSMA (h). Most cells positive for the cell-cycle inhibitor p27<°" are localized in media and adventitia, whereas hardly any positive cells
were found in the intima, indicating that especially in the intima cells are proliferating (i)

outer diameter of the stents in both groups (Fig. 3a).
In addition, injury score, a semi-quantitative measure
for injury to the vessel wall, was low and similar in
both groups (Fig. 3b). In-stent stenosis, the main out-
come in this study, was not inhibited by 6-MP, as
demonstrated by similar values for neointima thick-
ness (Fig. 3c). Furthermore, thickness of media and
adventitia was not affected by 6-MP (data not shown).
In order to determine whether the vascular response
was different between the different coronary arteries,
lumen stenosis in LAD, LCX and RCA was compared.
All coronary arteries displayed equal values, indicating
that localization of the stents in the coronary arteries
did not affect lesion size.

Inflammation

Infiltration of inflammatory cells observed around the
stent struts was predominantly symmetrical. Mostly, in-
filtrates were small and granulomas were present. In-
flammation score was similar between 6-MP and control
stents (Fig. 3d).

Discussion

The primary goal during the original development of
DES was to inhibit SMC proliferation, which has been
achieved successfully and convincingly. Unfortunately,
due to the drugs that were chosen for DES, the inhib-
ition of cell growth is not limited to SMCs, but is ac-
companied by delayed endothelial recovery. Given that
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Fig. 3 Morphometric analyses after 3 months of the stented coronary arteries. The outer diameter of the stented arteries (a) was similar within
and between the groups, indicating high reproducibility of stent implantation and expansion. The injury score was low in all stents and similar
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during stent placement the endothelial cell layer is se-
verely injured, incomplete healing causes increased risk
for thrombotic events within a year after stent place-
ment, and even beyond that. As a consequence, patients
need to adhere to dual anti-platelet therapy after DES
placement for a prolonged period of time [3-5]. In order
to combat this complication of current DES, our labora-
tory developed novel DES releasing 6-MP, a Nur77
agonist, which is known to have cell-type specific effects;
6-MP reduces SMC proliferation and the inflammatory
response of macrophages, while promoting survival of
ECs [6—17]. In rabbit iliac arteries, we demonstrated that
6-MP-eluting stents reduce stenosis and inflammation
after 1 month, with effective endothelial coverage of the
stent struts after 1 week [18]. Therefore, a similar effect
was expected in the present study, since the 4-week
rabbit iliac model and the 3-month porcine coronary
model are well established in DES research [21, 22].
However, in the current study stents eluting 300 pg 6-
MP did not display a reduction in intima formation or
in macrophage infiltration in porcine coronary arteries
after 3 months.

Since the novel 6-MP-eluting stents failed to reduce
stenosis or inflammation in the 3-month pig model, we
did not investigate endothelial cell coverage by scanning
electron microscopy. The aim of the present study was
to investigate the clinical potential of 6-MP-eluting
stents. The lower 6-MP dose (100 pg) used in our previ-
ous study was not tested in the current model, since this

had already been proven insufficiently effective in rabbits
[18]. We did explore the possibility to increase the 6-MP
dose on the stents. However, the enhanced coating
volume necessary to load more drug (500 pg) resulted
in stents with unfavourable mechanical characteristics
(data not shown).

A limitation of the current study is the small number
of observations. In combination with some variation in
the outcome, it is hard to obtain statistical significance.
The decision to use 3 different positions to implant the
stents in order to reduce the number of animals needed,
may have attributed to the variability. However, even
with the current amount of observations there was no
obvious trend towards improvement. Possibly, the inclu-
sion of an additional time point, e.g. 28 days as often
used in preclinical DES studies, might have revealed
more information about the effect of 6-MP in the vessel
wall. The narrow therapeutic window of 6-MP may ex-
plain the difference in outcome between the previous
rabbit study and the current pig study. In vitro, 6-MP
was shown to be effective at 10-50 uM to enhance
endothelial cell survival, [23] whereas monocytes and
macrophages respond to 50 uM 6-MP, and cultured
SMCs require 25 uM 6-MP for an optimal growth in-
hibitory response [24, 25]. At higher concentrations 6-
MP may lead to apoptosis, which is highly undesirable
in the setting of an atherosclerotic, stented vessel wall.
Cell death and fibrin deposition were not observed in
the section, however. We may conclude that it is difficult
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to reach this therapeutic window for 6-MP in vivo in
porcine coronary arteries. Even with controlled first-
order release of a hydrophobic drug like 6-MP, pene-
tration of the drug deep into the tissue may not have
reached the required local concentration of 6-MP and
optimal duration of the drug effect. A higher dose of
6-MP may be required to obtain the required 6-MP
concentration in the vessel wall. Further development
or refinement of the prototype is possible. Since higher
drug concentrations are not easily obtained on the limited
stent surface, a different release profile or duration may
improve the outcome.

Conclusions

In conclusion, 6-MP has previously been shown both in
vitro and in vivo to potently inhibit SMC proliferation,
reduce inflammation and promote endothelial cell sur-
vival. However, the 6-MP dose released from the cur-
rently developed 6-MP eluting stents was found to be
insufficient to reduce stenosis or inflammation in por-
cine coronary arteries after three months.
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