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Tlr2 deficiency does not limit the
development of left ventricular
hypertrophy in a model of transverse aortic
constriction induced pressure overload
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Abstract

Background: Toll-like receptors (TLRs) are involved in a variety of cardiovascular disorders, including septic
cardiomyopathy, ischemia/reperfusion, heart failure, and cardiac hypertrophy. Previous research revealed that TLR4
promotes cardiac hypertrophy in vivo. Therefore, we investigated whether TLR2 is also involved in the development
of cardiac hypertrophy.

Methods: Tlr2 deficient and wild type mice were subjected to transverse aortic constriction (TAC) or sham
operation procedure. Left ventricular, heart and lung weights as well as hemodynamic parameters were determined
after 3, 14 or 28 days. Real-time RT PCR was used to evaluate left ventricular gene expression. Protein content was
determined via ELISA.

Results: TAC increased systolic left ventricular pressure, contraction and relaxations velocities as well as the
heart weight in both genotypes. Tlr2 deficiency significantly enhanced cardiac hypertrophy after 14 and
28 days of TAC. Left ventricular end-diastolic pressure and heart rate increased in Tlr2−/− TAC mice only.
Fourteen days of TAC led to a significant elevation of ANP, BNP, TGFβ and TLR4 mRNA levels in Tlr2−/− left
ventricular tissue.

Conclusion: These data suggest that Tlr2 deficiency may promote the development of cardiac hypertrophy
and ventricular remodeling after transverse aortic constriction.
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Background
Toll-like receptors (TLRs) are involved in a variety of
cardiovascular disorders, including myocardial dys-
function during sepsis, ischemia/reperfusion, heart
failure, cardiac hypertrophy, and atherosclerosis. Pre-
vious research revealed that TLR4 promotes cardiac
hypertrophy in vivo [1, 2], and that the endogenous
TLR4 ligand fibrinogen induces a hypertrophic re-
sponse of cardiomyocytes [3]. Like Tlr4−/− mice, Tlr2

−/− and Tlr9−/− mice responded to myocardial infarc-
tion with reduced injury [4–7].
Endogenous ligands such as heat shock proteins

HSP60, HSP70, and HSP96, HMGB1, biglycan, and β-
defensin, have been shown to activate NF-κB via TLR2
and TLR4 in non-cardiac cells. Cardiac overload in-
creased HSP70 and HSP72 expression in myocardium
[8, 9] and targeted over-expression of HSP56 promoted
hypertrophy of cultured cardiac muscle cells [10]. Over-
all, these studies suggest a strong correlation between
TLR signaling and heart disease. We aimed to clarify,
whether TLR2 contributes to the development of cardiac
hypertrophy. Therefore, we investigated the influence of
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TLR2 deficiency on transverse aortic constriction (TAC)
induced pressure overload for up to 28 days.

Results
TLR2-deficiency increases cardiac hypertrophy after
transverse aortic constriction
Age and weight matched WT or Tlr2−/− male mice dis-
played a significant increase of heart (HW) and left ven-
tricular weight (LVW) 14 days after TAC surgery
(Fig. 1a, b). Normalization of LVW to tibia length (TL)
confirmed that transverse aortic constriction accounted
for LVW differences between TAC and sham groups.
We also observed a significant increase of lung weight
(LW)/TL ratio in both TAC groups compared to the re-
spective sham group (Fig. 1c). The extent of cardiac
hypertrophy was increased in Tlr2−/− versus Tlr2+/+

mice as demonstrated by a 22.1 % higher HW/TL ratio
(p < 0.01) and 19.2 % elevated LVW/TL ratio (not
significant).
TAC induced a significant elevation of left ventricu-

lar systolic pressure (LVSP) in both genotypes (p <
0.001; Fig. 1d). Overall, left ventricular end-diastolic
pressure (LVEDP, Fig. 1e) and heart rate (HR; Fig. 1f )
were elevated in the two TAC groups but reached the
level of significance only in Tlr2-/ - mice (p < 0.05).
Aortic constriction increased contraction (dP/dt max;
Fig. 1g) and relaxation velocity (dP/dt min; Fig. 1h) in
both genotypes.

mRNA expression of hypertrophy related genes is
enhanced in Tlr2−/− mice
Since we monitored an influence of TLR2 signaling on
cardiac measures, we analyzed whether the hypertrophy
related genes atrial natriuretic peptide (ANP), b-type
natriuretic peptide (BNP) and transforming growth factor
(TGF)β reflect these findings (Fig. 2 a-c). Fourteen days of
pressure overload induced a significant up-regulation of
natriuretic peptides ANP and BNP (p < 0.001) as well as
pro-hypertrophic TGFβ (p < 0.01) in Tlr2−/− mice but not
in wild type mice.

Twenty-eight days of TAC do not further impair cardiac
hypertrophic and hemodynamic function in Tlr2+/+or Tlr2
−/− mice
Since we observed differences in biometric parameters
and hypertrophy related genes after 14 days, we as-
sumed that the increased cardiac hypertrophy in Tlr2
−/− mice might lead to a decompensated heart failure
with impaired cardiac function over time. Therefore,
we extended the duration of aortic constriction to
28 days and repeated biometric and hemodynamic
measurements (Fig. 3). In Tlr2−/− mice, HW/TL and
LVW/TL remained significantly elevated compared to
Tlr2+/+ (p < 0.05) mice (Fig. 3 a+b). Hemodynamic

function was not further impaired after 4 weeks and
we detected no differences between the two genotypes
(Fig. 3 d-g).

The TLR2 effect on cardiac hypertrophy development is
gender independent
Previous studies revealed that gender modifies the re-
sponse to cardiac overload [11]. Therefore, we tested
whether we also observe a gender dependent interaction
between TLR signaling and LV remodeling.
We repeated 14 and 28 days of aortic constriction

in female mice. Cardiac hypertrophy was less promin-
ent in female mice. After TAC, HW/TL as well as
LVW/TL ratios were significantly increased in Tlr2−/−

but not Tlr2+/+ mice (Fig. 4 a+b). However, LVSP was
significantly elevated in both genotypes after TAC
(Fig. 4 c). Alterations in LVEDP were not detectable
(data not shown).

Differential regulation of extracellular matrix related
genes after 14 days of TAC
In a previous publication by Mersmann et al. the
authors reported left ventricular dilation, pronounced
matrix remodeling characterized by reduced collagen
and decorin density in the infarct scar of Tlr2−/−

mice 28 days after myocardial ischemia/reperfusion
injury [12]. We assumed that alterations in extracel-
lular matrix (ECM) composition might also explain
the observed differences in cardiac hypertrophy.
Therefore, we measured the expression of ECM compo-
nents as well as ECM degrading enzymes in our samples
(Table 1).
After TAC we detected no major differences be-

tween genotypes in the expressions of pro-collagen
type 1α 1 (COL1α1), COL3α1 and COL4α1 mRNA.
Interestingly, COL1α1 showed a significant fourfold
increase in Tlr2−/− mice at baseline. We detected an
elevation of the proteoglycan biglycan (p < 0.05) and
weak decorin induction (not significant) in both geno-
types after TAC. We observed a significant increase
in TAC induced mRNA expression of the structural
protein elastin in both genotypes. Wild type cardiac
tissue elastin levels were higher than those measured
in Tlr2−/− hearts (p < 0.05). Lysyl oxidase (LOX) cata-
lyzes the cross-linking between collagens and elastins.
LOX mRNA expression was elevated by TAC in both
genotypes (p < 0.05).
Matrix metalloproteinases (MMPs) regulate extracellu-

lar matrix degradation and synthesis, thereby controlling
cardiac remodeling [13]. MMP2 and −13 but not MMP9
mRNA expression increased significantly (p < 0.05) in
wild type mice after TAC.
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Fig. 1 (See legend on next page.)
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Modulation of TLR1 and −4 mRNA expression due to
14 days of aortic constriction
Three days of cardiac pressure overload have been
shown to modulate the expression of TLRs [14]. Release
and recognition of endogenous TLR ligands might
modulate the expression of their respective receptors,
and differentially alter the sensitivity towards the re-
spective ligands in Tlr2−/− deficient mice. Thus, we de-
termined CD14, TLR-1, −2, −4, −6 and −9 mRNA after
14 days of TAC (Table 2). TLR1 mRNA expression was
significantly upregulated in both genotypes after 14 days
of aortic constriction (p < 0.05). Upregulation of TLR4
mRNA expression reached the level of significance in
Tlr2−/− mice (p < 0.05). Alteration of other pattern
recognition receptors past TAC was only moderately
induced.

Mediator and PRR expression 3 days after TAC
We assumed that TLR4 induction observed in Tlr2−/−

mice after 14 days of TAC may reflect a dysregulated
and prolonged upregulation of TLR4, thereby increasing
endogenous TLR4 ligand binding and enhancing the
pro-inflammatory cytokine response [1, 2, 15–18].
Therefore, we examined pattern recognition receptor
(PRR) as well as pro-inflammatory cytokine regulation
after 3 days of pressure overload. However, we observed
no major differences in PRR induction between the
groups (Table 3). Overall, pro-inflammatory cytokine
mRNA expression increased TAC dependent. However,
only IL-6 levels were significantly increased in Tlr2−/−

TAC mice. Both TAC groups displayed an elevation of
IL-6 protein. However, none of these alterations were
significant at this time point (Table 4).
Next, we analyzed whether hypertrophy related media-

tors were changed after 3 days of TAC (Table 5). Alter-
ations in TGFβ, ANP and BNP transcription were less
prominent than measurements after 14 days of TAC
proposed. Interestingly, WT TAC mice but not Tlr2−/−

TAC mice displayed increases of ANP and BNP values
with BNP being significantly elevated.

Discussion
Our findings suggest that genetic disruption of Tlr2
cannot prevent cardiac hypertrophy in a model of
hemodynamic overload. On the contrary, Tlr2 deficiency
impaired cardiac hypertrophy after TAC. Increased

expression of pro-hypertrophic mediators ANP, BNP and
TGFβ after 14 and 28 days of transverse aortic constric-
tion support the finding of enhanced hypertrophy devel-
opment in Tlr2 deficient mice.
Since it is unclear which TLRs and danger associated

molecular patterns influence cardiac hypertrophy, we ex-
amined TLR expressions. We assumed that ligand pres-
entation modulates receptor expression. Interestingly,
TLR1 and −4 gene expressions were increased in Tlr2−/−

TAC mice compared to the respective sham group and
wild type TAC mice. However, it remains unclear
whether up-regulation of TLR1 and −4 was induced by
the presence of specific endogenous ligands or was a
feedback regulatory event to inflammation. A compensa-
tive up-regulation of PRRs in knockout lines might out-
balance the respective receptor deficiency, and influence
hypertrophy development. However, baseline values of
TLRs in cardiac tissue were similar to wild type data. In
a previously conducted study our group demonstrated
that Tlr2−/− mice exhibited significantly higher TLR4
baseline levels in aortic tissue, increased pro-inflammatory
mediator expression along with a loss of contractile func-
tion after 18 h in a Colon ascendens stent peritonitis
model [19]. Potentially, increased vascular stress and re-
lease of endogenous ligands signaling via TLR4 may have
occurred in Tlr2−/− TAC mice. The TAC induced increase
of TLR4 mRNA expression might support the assumption
that TLR4 signaling is a major contributor to the develop-
ment of cardiac hypertrophy. It has already been shown
that TLR4 signaling increases early pressure overload
dependent cytokine expression [1, 2]. After the detection
of elevated TLR4 transcripts after 14 days of TAC, we as-
sumed that TLR4 expression might increase early on and
accounts for prolonged inflammation in TLR2 deficient
mice, thereby promoting cardiac hypertrophy develop-
ment. Weisheit et al. reported that an increased immune
cell infiltration and cytokine production was associated
with hypertension and end organ damage [20]. Therefore,
we analyzed TLR4 and cytokine mRNA and protein levels
on day 3 after TAC in wild type and Tlr2−/− mice. A previ-
ous study indicated that aortic constriction in C57BL/6
mice rapidly initiates cytokine induction within 6 h [17],
and cytokine levels returned to baseline after 3 days. We
did not observe a major load or genotype dependent PRR
regulation. Pro-inflammatory cytokine mRNA expression
as a measure of the inflammatory response showed a

(See figure on previous page.)
Fig. 1 Fourteen days of aortic constriction differentially modify biometric and hemodynamic measurements in male Tlr2+/+ and Tlr2−/− mice. a-c Heart
weight (HW), left ventricular (LVW) and lung weight (LW) were normalized to tibia lengths (TL). Ratios increased in all TAC groups in comparison to
sham groups. Tlr2−/− mice developed a significantly elevated HW/TL ratio compared to Tlr2+/+ mice (mean ± SEM, n = 5–11/group). d-h TAC altered
left ventricular systolic pressure (LVSP), contraction (dP/dtmax) and relaxation (dP/dtmin) velocity in both genotypes, but changed left ventricular end-
diastolic pressure (LVEDP) and heart rate (HR) in Tlr2−/− mice only (mean ± SEM, One-way ANOVA with Sidak post-hoc testing, n = 9–12/group)
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load-dependent elevation in both genotypes with a signifi-
cant up-regulation of IL-6 mRNA in Tlr2 deficient mice
only. However, protein secretion measured in cardiac tis-
sue was not in line with this observation and serum levels
have not been measured. Therefore, the detected elevation
of TLR4 and IL-6 mRNA levels are weak indicators of a
prolonged inflammatory response in Tlr2−/− mice. Quanti-
fication of immune cells and intracellular cytokine quanti-
fication may provide deeper insight into the inflammatory
mechanisms involved.
A compensatory left ventricular hypertrophy develops

progressively between post-operative days 3 to 10 with
minor increase after day 10 [21]. In concordance with
these results, we measured a pronounced increase of
wild type left ventricular weight in the first 14 days after
TAC, without further changes until day 28. Persisting
hemodynamic overload induces excessive enlargement
of cardiomyocytes and progressive interstitial fibrosis.
Furthermore, it results in myocardial microvascular dys-
function, and increased endothelial permeability [22].
Distension of the ventricular wall initiates the secretion of
natriuretic peptides, which regulate diuresis and mainten-
ance of blood pressure. In our experiments, TAC caused
an increase of natriuretic peptides ANP and BNP as deter-
mined on day 14 after surgery. Synthesis of natriuretic
peptides is an early load dependent phenomenon starting
within 24 h after TAC [23]. ANP and BNP are used as
clinical markers for hypertrophy and cardiac dysfunction,
which correlate with the severity of symptoms and prog-
nosis [24, 25]. However, it has also been demonstrated
that cytokines directly modulate the transcription and
translation of natriuretic factors [26]. Tlr2−/− mice exhib-
ited the strongest increase of ANP and BNP 14 days after
TAC, which was in line with enhanced hypertrophy and
impaired cardiac function. In contrast, higher ANP and
BNP levels were found in wild type mice after 3 days of
pressure overload even though differences in the extent of
cardiac hypertrophy were not detectable at that time point
(data not shown).
Mersmann et al. demonstrated a Tlr2 deficiency driven

adverse cardiac remodeling in a model of myocardial in-
farction [12]. Twenty-eight days after reperfusion, Tlr2−/−

animals developed left ventricular dilation and defective
scar formation. This was associated with pronounced
extracellular matrix (ECM) remodeling characterized by
reduced collagen and decorin density. In our study, the
transcription levels of Col1α1, Col3α1, elastin and LOX

ANP

0

1

2

3

4

5

fo
ld

 in
cr

ea
se

sham
TAC

WT Tlr2-/-

p<.001

BNP

0

1

2

3

4

fo
ld

 in
cr

ea
se

p<.001

WT Tlr2-/-

TGF

0.0

0.5

1.0

1.5

2.0

fo
ld

 in
cr

ea
se

p<.001

WT Tlr2-/-

A

B

C

Fig. 2 Measurement of pro-hypertrophic mediator mRNA expression
as observed 14 days after aortic constriction by quantitative real-time
PCR. Atrial natriuretic peptide (ANP) (a), B-type natriuretic peptide
(BNP) (b), and transforming growth factor (TGF)-β (c) were increased in
Tlr2−/− mice post TAC (mean ± SEM, One-way ANOVA with Sidak
post-hoc testing, n = 8/group)
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Fig. 3 Comparative analysis of biometric and hemodynamic differences after 14 and 28 days of aortic constriction in male WT and Tlr2−/− mice.
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accelerated decompensation in any group (mean ± SEM, One-way ANOVA with Tukey post-hoc testing, a n = 7–11/group, b n = 6–13/group)
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were slightly decreased in Tlr2−/− mice. Thus, an overall
lower ECM compound expression in the tissue may favor
ECM destabilization. Otherwise, higher cardiac mass in
Tlr2−/− mice may point towards an elevated heart weight
due to increased cardiomyocyte mass and size.
Higashikuni et al. concluded from their studies that

TLR2 mediated inflammation is essential for adaptive
cardiac hypertrophy in response to pressure overload
[9]. They also reported that genetic disruption of Tlr2
impaired hemodynamic function. Furthermore, it en-
hanced left ventricular dilation and lowered the survival

rate. However, in their model Tlr2 deficiency attenuated
cardiac hypertrophy. Even though their and our studies
were both performed in the same Tlr2 knockout mice
[27], the extent of hypertrophy, survival rates as well as
inflammatory responses differed in numerous aspects,
whereas hemodynamic function was to different levels
impaired in both studies. Our data demonstrated a com-
pensated hypertrophy with impaired left ventricular dia-
stolic function but preserved contraction and relaxation
velocity. In our hands, survival rates of both wild type
and Tlr2−/− mice were above 90 % and did not differ.
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more pronounced hypertrophy than WT mice (mean ± SEM, One-way ANOVA with Tukey post-hoc testing, n = 7–11/group)
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Even after 28 days of pressure overload, cardiac hyper-
trophy was still compensated in our study. In contrast,
Highashikuni et al. observed a decompensated heart fail-
ure alongside with increased mortality within few days
in Tlr2−/− TAC mice. A publication elucidating the effect
of TAC in commonly used C57BL/6 substrains such as
NCrl and J demonstrated that the cardiac response to
pressure overload is distinct among the substrains [28].
Backcrossing Tlr2−/− mice on different BL/6 substrains
in various breeding facilities may change the outcome
parameters. Furthermore, surgical procedures might vary
slightly. For example fabrication by different manufac-
turers variegates the external diameter of 27G cannulas.
Cardiac hypertrophy displays gender dependent differ-

ences. We aimed to elucidate whether gender interferes
with the TLR2 dependent development of cardiac hyper-
trophy. Estrogen and estrogen receptors (ER) play a crit-
ical role in cardiac hypertrophy [29, 30]. ERβ signaling
protects the murine heart against TAC induced left

ventricular hypertrophy [11]. Furthermore, estrogen
receptor signaling may impact the responsiveness of
TLRs and trigger pro-inflammatory mediator production
[31, 32]. An estrogen-response element has been identi-
fied in the TLR2 promoter, enhancing TLR2 transcrip-
tional activity in an estrogen dependent pattern [33]. In
line with previous reports, we detected an attenuated
cardiac hypertrophy of female wild type hearts. However,
TLR2 deficiency provoked increased female heart
weights after TAC. Future studies need to elucidate
whether estrogen-dependent TLR2 transcription occurs
upon aortic constriction in female mice, and whether
this contributes to the attenuated development of car-
diac hypertrophy.
Based on our findings, prospective studies will interro-

gate the regulation of leukocyte recruitment, activation,
and function in models of tissue injury predisposing to
secondary infections. Mechanistic analyses need to dis-
cover whether a transient modulation of TLR4 signal
transduction might offer new possibilities for the better
use of safe and efficient TLR4 agonists.

Conclusions
Our data suggest, that TLR2 signaling may preserve car-
diac function and limit cardiac hypertrophy in a murine
model of pressure overload. Thus, modulation of TLR2
signaling may provide a future treatment option for car-
diac diseases. However, a comprehensive review reveals

Table 4 mRNA and protein expression of pro-inflammatory
cytokines 3 days after aortic constriction in male wild type and
Tlr2 deficient mice

WT sham WT TAC Tlr2−/− sham Tlr2−/− TAC

TNFα 1.00 ± 0.10 1.45 ± 0.15 0.90 ± 0.14 1.21 ± 0.26

IL-1β 1.00 ± 0.28 2.21 ± 0.52 1.19 ± 0.42 1.43 ± 0.21

IL-6 1.00 ± 0.24 5.33 ± 0.97 0.65 ± 0.12 5.74 ± 1.13*

IL-1β protein 1.46 ± 0.25 3.03 ± 0.53 1.53 ± 0.19 2.65 ± 0.44

IL-6 protein 15.84 ± 3.81 19.94 ± 3.68 13.14 ± 2.31 22.42 ± 2.63

mRNA values are normalized to the respective sham group. Protein amount in
pg/mg protein. Mean ± SEM, n = 3–4/sham group, n = 5–8/TAC group
*indicates significant difference to respective sham group (p < 0.05, One-way
ANOVA with Sidak post-hoc testing)

Table 3 mRNA expression profile of PRRs 3 days after aortic
constriction in male wild type and Tlr2 deficient mice

WT sham WT TAC Tlr2−/− sham Tlr2−/− TAC

TLR1 1.00 ± 0.23 1.69 ± 0.42 1.88 ± 0.34 1.56 ± 0.0.22

TLR4 1.00 ± 0.17 1.36 ± 0.13 0.91 ± 0.05 1.22 ± 0.05

TLR6 1.00 ± 0.03 1.12 ± 0.05 1.03 ± 0.04 1.00 ± 0.07

TLR9 1.00 ± 0.11 0.98 ± 0.01 1.32 ± 0.27 0.92 ± 0.06

CD14 1.00 ± 0.10 1.41 ± 0.18 1.04 ± 0.26 1.22 ± 0.11

Values are normalized to the respective sham group, mean ± SEM, n = 3–4/
sham group, n = 5–8/TAC group

Table 2 Pattern recognition receptor mRNA expression profile
14 days after aortic constriction in male wild type and Tlr2
deficient mice

WT sham WT TAC Tlr2−/− sham Tlr2−/− TAC

TLR1 1.00 ± 0.12 1.92 ± 0.25* 0.92 ± 0.19 1.68 ± 0.10*

TLR4 1.00 ± 0.06 1.31 ± 0.11 1.05 ± 0.07 1.59 ± 0.16*

TLR6 1.00 ± 0.09 1.28 ± 0.12 1.28 ± 0.13 1.50 ± 0.08

TLR9 1.00 ± 0.09 1.54 ± 0.22 1.07 ± 0.07 1.55 ± 0.10

CD14 1.00 ± 0.08 1.49 ± 0.19 0.98 ± 0.19 1.57 ± 0.23

Values are normalized to wild type sham group, mean ± SEM, n = 8/group
*indicates significant differences to respective sham group (p < 0.05, One-way
ANOVA with Sidak post-hoc testing)

Table 1 mRNA expression profiles of extracellular matrix related
genes 14 days after aortic constriction in male wild type and
Tlr2 deficient mice

WT sham WT TAC Tlr2−/− sham Tlr2−/− TAC

Col1α1 1.00 ± 0.18 2.91 ± 0.43a 4.06 ± 0.67b 2.44 ± 0.35

Col3α1 1.00 ± 0.19 3.46 ± 0.46a 0.91 ± 0.10 2.52 ± 0.30c

Col4α1 1.00 ± 0.07 1.74 ± 0.21 1.26 ± 0.07 2.62 ± 0.44c

Biglycan 1.00 ± 0.06 1.91 ± 0.19a 0.88 ± 0.11 1.82 ± 0.18c

Decorin 1.00 ± 0.04 1.12 ± 0.06 0.90 ± 0.08 1.11 ± 0.09

Elastin 1.00 ± 0.32 2.94 ± 0.41a 0.69 ± 0.09 1.81 ± 0.22c,d

LOX 1.00 ± 0.25 2.96 ± 0.46a 0.84 ± 0.10 2.20 ± 0.37c

MMP2 1.00 ± 0.12 2.08 ± 0.36a 1.40 ± 0.19 1.73 ± 0.25

MMP9 1.00 ± 0.13 1.12 ± 0.15 1.08 ± 0.14 1.41 ± 0.17

MMP13 1.00 ± 0.09 1.68 ± 0.20a 1.42 ± 0.15 1.75 ± 0.17

Values are normalized to wild type sham group, mean ± SEM, n = 8/group.
Significant differences (p < 0.05, One-way ANOVA with Sidak post-hoc testing)
between relevant groups are indicated by identical superscripted letters
aWT sham vs. WT TAC
bWT sham vs. Tlr2−/−
cTlr2−/−sham vs. Tlr2−/− TAC
dWT TAC vs. Tlr2−/− TAC
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that the substrain specific phenotype of wild type mice
chosen for backcrossing may also influence the extent
and pathology of heart failure in Tlr2 knockout mice. It
may alter the expression of TLR2 signaling induced in-
flammatory mediators as well as the adaption to
hemodynamic stress. Therefore, careful regard for
mouse strains from different sources is relevant when
comparing data and drawing conclusions from inde-
pendent studies.

Methods
Experimental animals
Experiments were performed on male and female mice
at an age of about 12 weeks. C57BL/6NCrl mice were
purchased from Charles River (Sulzfeld, Germany).
Breeding pairs of Tlr2−/− mice on C57BL/6 genetic back-
ground were kindly provided by S. Akira [34]. Tlr2−/−

mice were backcrossed to C57BL/6NCrl. All animals
employed in the present study were housed in individu-
ally ventilated pathogen-free cages with free access to
water and standard rodent chow. The animal protocol
was approved by the local committee for animal care
(LANUV, Recklinghausen, Germany; animal protocol
#50.203.2-BN43 38/06, 9.93.2.10.35.07.157). The proto-
col was in accordance with the National Institutes of
Health guidelines for use of live animals (NIH publica-
tion No. 85–23, revised 1996).

TLR2 genotyping
Genetic modification of each mouse incorporated in the
study was confirmed by genotyping. Genomic DNA was
extracted from mice tails. The primer sequences used
for polymerase chain reaction analysis of the wild type
allele were as follows: „TLR2 A“5′-GTT TAG TGC
CTG TAT CCA GTC AGT GCG-3′ and „TLR2 B“5′-
TTG GAT AAG TCT GAT AGC CTT GCC TCC-3′.
„TLR2koCneo“5′-ATC GCC TTC TAT CGC CTT CTT
GAC GAC G-3′ and „TLR2 B“were specific for the mu-
tated TLR2 allele.

Experimental model of transverse aortic constriction
Animals were separated into two subgroups, undergoing
TAC or sham operation. TAC induced cardiac hypertrophy

in mice. Surgery for TAC was achieved as published previ-
ously [17, 35]. Mice were intubated in a supine position
and mechanical ventilation was initiated (MiniVent 845,
Hugo Sachs Elektronik, March-Hugstetten, Germany).
Ventilation was adapted to physiological parameters. A left
parasternal incision was performed. Retractors were used
to achieve a clear sight into the thorax. A suture was passed
underneath the aortic arch and tied down on a 27G needle,
which was immediately removed. Thereby, a standardized
and previously validated decreased diameter of the aorta
was produced [17, 35]. For sham-operation procedure the
suture was passed underneath the aortic arch without
ligation. After surgery we monitored the mice daily for clin-
ical signs of infection such as shivering, lethargy, and diar-
rhea. None of the included mice showed any kinds of
healing problems following the surgery. For analgesia mice
received a single intraperitoneal injection of 0.065 mg/kg
BW buprenorphin.

Hemodynamic measurements
Hemodynamic parameters were recorded at the end of
the study period using a 1.2 French pressure catheter
(Transonic Systems Inc Ithaca, NY, USA). Animals were
prepared under anesthesia with 2.5 Vol.% isoflurane.
Data recordings were performed under 1Vol.% isoflurane
and 1 L/min oxygen flow. For the recording of left ven-
tricular blood pressure the catheter was inserted into the
right carotid artery. First, the catheter was pushed for-
ward to a position 4 mm in front of the aortic valve for
peripheral blood pressure recordings and was then fur-
ther advanced into the left ventricle. Data were analyzed
using a power lab data acquisition system (AD Instru-
ments; Software: LabChart for Windows v.6 Power Lab).

Biometric measurements
The impact on cardiac biometric parameters was investi-
gated 14 or 28 days after TAC or sham surgery. Body
weight was registered. Heart and lung were excised, pre-
pared and total heart weight (HW), left ventricular
(LVW) as well as lung weights (LW) and tibia lengths
(TL) were recorded immediately. Ventricles were snap
frozen in liquid nitrogen and kept at −80 °C.

RNA isolation and quantitative real-time PCR
Total RNA was isolated after homogenization of the left
ventricle (TRIzol, Applied Biosystems, Carlsbad, CA,
USA). RNA was dissolved in 100 μl of RNase-free water,
and concentration was determined photometrically (ab-
sorbance at 260 nm) before storage at −80 °C. RNA was
transcribed reversely according to the manufacturer’s
protocol using the High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA, USA,
Part No. 4368814). 25 μl RNA were mixed with 25 μl
master mix, containing 5 μl 10x reverse transcriptase

Table 5 mRNA expression of prohypertrophic mediators 3 days
after onset of aortic constriction in male wild type and Tlr2
deficient mice

WT sham WT TAC Tlr2−/− sham Tlr2−/− TAC

TGFβ 1.00 ± 0.04 1.16 ± 0.08 0.93 ± 0.07 1.13 ± 0.05

ANP 1.00 ± 0.27 2.83 ± 0.38 2.16 ± 0.41 3.09 ± 0.49

BNP 1.00 ± 0.19 6.04 ± 1.78* 1.82 ± 0.22 4.41 ± 0.49

mRNA values are normalized to wild type sham group. Mean ± SEM, n = 3–4/
sham group, n = 5–8/TAC group. Significant differences (p < 0.05, One-way
ANOVA with Sidak post-hoc testing) between relevant groups are indicated (*)
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buffer, 2 μl 25x dNTPs, 2 μl 10x random primers, 2.5 μl
multi scribe reverse transcriptase and 10.5 μl nuclease
free water.
We used specific pre-made TaqMan® Gene Expression

Assays (Applied Biosystems) for 18S (Mm02601777_g1),
ANP (Mm01255748_g1), BNP (Mm01255770_g1), TGFβ
(Mm0044 1726_m1), TNF∝ (Mm00443258_m1), IL-1β
(Mm01336189), IL-6 (Mm00446190_m1), CD14 (Mm0
0438094_g1), TLR1 (Mm01208874_m1), −2 (Mm004
42346_m1), −4 (Mm0044 5273_m1), −6 (Mm02529
782_s1), −9 (Mm00446193_m1), elastin (Mm00514670),
decorin (Mm00514535_m1), lysyl oxidase (LOX)(M
m00495386_m1), collagen 1∝1 (Mm0080 1666_g1), col-
lagen 3∝1 (Mm01254476_m1), collagen 4∝1 (Mm0
1210125_m1), matrix metalloproteinase (MMP)-2 (Mm0
0439498_m1), −9 (Mm00442991_m1), and −13. Real-
time PCR was performed according to the manufac-
turer’s protocol. 5.5 ng of cDNA was mixed with 5 μl
2xTaqMan® Universal Master Mix (Applied Biosystems,
#4304437), 0.5 μl TaqMan® Gene Expression Assay and
2.3 μl nuclease free water to a final volume of 10 μl in a
384-well optical reaction plate. Each sample was mea-
sured in triplicate wells and underwent 40 cycles of
amplification on an ABI PRISM® Sequence Detection
System (Applied Biosystems). CT values were determined
with SDS Software 2.2 (Applied Biosystems) and relative
quotients (RQ) were calculated following the ΔΔCT

method (RQ target gene / 18S). Fold increase of the wild
type sham group was calculated and depicted.

Protein isolation and enzyme-linked immunosorbent
assay (ELISA)
Left ventricular tissue was homogenized in ELISA buffer
containing PBS, Igepal (1 μl/ml, Sigma), PMSF (250 mmol
in isopropanol, 1 μl/ml, Sigma), and protease inhibitors
(Complete mini, Roche). Samples were incubated on ice
for 20 min and centrifuged for 15 min at 4 °C and
13,110 g. The supernatant was snap-frozen and used for
measuring protein levels with Quantikine mouse tumor
necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6
ELISA (R&D Systems, McKinley, MN, USA). The concen-
tration was normalized to protein concentration as deter-
mined by BCA protein assay (Pierce).

Data analysis and statistical procedures
All values are expressed as mean ± SEM. For tests of
significance between the groups, one-way analysis of
variance (ANOVA) and Tukey or Sidak post-hoc test-
ing was performed for statistical analysis. Statistics
were calculated using Prism 4.05 (GraphPad Software
Inc., San Diego, CA, USA). Differences between ex-
perimental groups were considered to be significant
with p < 0.05.
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LW: lung weight; MMP: matrix metalloproteinase; TAC: transverse aortic
constriction; TGF: transforming growth factor; TL: tibia length; TLR: toll-like
receptor; TNF: tumor necrosis factor; WT: wild type (C57BL/6) mice.
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